
UCRL-WEB-218121

Environment Variables

Environment Variables - 1

Table of Contents

Preface 3
Introduction 4
Environment Variable Background and Philosophy 5

Roles 5
Syntax 6
Tools 7
Security Issues 9

Kinds of Environment Variables at LC 10
System Variables 10
Get-Only Variables 13
User-Setable Variables 15

Append Values 15
Replace Values 17

Batch-Job Environment Variables 30
Environment Variables Known to LCRM 30

A. Submittal Variables 31
B. Execution Variables 32
C. Unset Variables 35
D. Deprecated Variables 36

How LCRM Uses Environment Variables 37
At Job Submittal 37
At Job's Execution 39

SLURM Environment Variables 40
SRUN Option Variables 40
Task-Environment Variables 42
Other SLURM-Relevant Variables 45

LD_LIBRARY_PATH Details 46
Dictionary of LC Environment Variables 48
Dotkit 53
Disclaimer 54
Keyword Index 55
Alphabetical List of Keywords 56
Date and Revisions 57

Environment Variables - 2

Preface

Scope: This Environment Variables guide explains the role and use of environment variables
on UNIX computing systems in general and on LC machines in particular. It surveys
relevant tools, syntax, and security issues, then summarizes LC-relevant environment
variables by what they do for users (system management, application support, batch-job
enabling, etc.). LCRM's handling of environment variables, including those used for
job control and checkpointing by SLURM, receives special attention, along with the
many environment variables that SLURM uses to manage tasks and their resources.
A later "dictionary" section cross references locally important environment variables
in one alphabetical list.

Availability: When the variables described here are limited by machine, those limits are included
in their explanation. Otherwise, they appear on any LC UNIX system.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, secure e-mail: lc-hotline@pop.llnl.gov).

Printing: The print file for this document can be found at:

OCF: http://www.llnl.gov/LCdocs/ev/ev.pdf
SCF: http://www.llnl.gov/LCdocs/ev/ev_scf.pdf

Environment Variables - 3

http://www.llnl.gov/LCdocs/ev/ev.pdf

Introduction
Environment variables are a standard aspect of any UNIX computing environment. The shells, your

scripts and applications, and the job-management system (LCRM and SLURM) all rely on environment
variables to both consistently share a software context across users and time and to customize that shared
context (as allowed) to adapt it to your specific computing needs.

Many LC user manuals (and vendor documents too) discuss particular environment variables for
particular purposes (MPI support, code threading, job control, output management). This guide aims to
supplement those separate, narrow discussions with a general, comparative look at how environment
variables contribute to your use of LC computing resources. It is not truly comprehensive, however, since
hundreds (perhaps thousands) of environment variables are available on AIX and Linux systems, and we
focus here on those most relevant to and most useful for successful high-performance computing on LC
machines. The goal is not to replace other focused treatments of specific environment variables, but to
support them with an organized, integrated overview that will help you more easily discover and more
fully appreciate those technical details.

This manual begins with a functional approach. One section (page 5) summarizes the role of, standard
syntax for, relevant software tools for, and some known security concerns with environment variables at
LC. Another section (page 10) then revealingly groups and explains LC's most important environment
variables by how they work on local machines (system support, user support, batch support, etc., with
some overlap of course). Because the situation is complex, with many important consequences, LCRM's
use of environment variables for job management receives especially thorough attention (page 30), as
does the suite of environment variables that SLURM uses to control tasks and their resources on each
cluster (page 40).

Later the text offers an alternative, alphabetical (or dictionary) approach (page 48). Here you can find
an environment variable by name in one master list, and then link to a contextualized discussion of its
functional background or intended role(s) elsewhere in the text.

Environment Variables - 4

Environment Variable Background and Philosophy

Roles
That variables serve as named local storage locations for string or numeric values is well known. Typical

script examples include:

 CSH--
 set myvar = this.string
 echo $myvar

 SH--
 mvar=this.string
 echo "$myvar"

But the values of such ordinary variables are unknown to other processes or to the shell. They are strictly
local to the process that declares them.

UNIX environment variables, however, are placed in the calling environment of every child process
(each child process has a copy of these variables for its own use). When such environment variables are
inherited by the shell or declared and initialized at shell startup, they apply to your login environment, to
all other subshells later spawned, and to all the programs that run within those contexts. Hence, environment
variables are a convenient way to share crucial constraints (your terminal type), preferences (your search
path), or support information for reliable job execution (where needed libraries reside).

Each standard environment variable at LC:

• has a specified name (see the next subsection for syntax restrictions),

• stores a string value (which might include digits),

• may be preset for you (to standardize the computing environment and improve reliability),

• can be reset by you (sometimes needed or desirable, sometimes quite undesirable),

• helps create, remember, and share a common software context for your scripts and applications
(which path to search, where to send output), and

• persists as long, but only as long, as you stay logged in (so customized values need to be redeclared
in your "dot files" (.login, .profile, etc.) to execute at each login).

Environment Variables - 5

Syntax
Because environment variables are intended for widely sharing their contents among shells, UNIX

utilities, and applications, some rules are necessary to make that sharing reliable. Thus IEEE Standard
1003.1-2001 specifies that:

• For shells and utilities, UNIX environment variable names should consist solely of

◊ uppercase letters,

◊ digits, and

◊ the underscore (_) character.

• The namespace of environment-variable names containing lowercase letters is reserved for
applications. To avoid collisions, uppercase and lowercase letters should never be folded together
when processing environment variables.

• Environment-variable names should never begin with a digit (to avoid confusing some tools or
applications).

• The values assigned to environment variables are not restricted except that they end in a null byte
and that a system may impose a limit on the total number of bytes used to store values (specified in
an optional environment variable, ARG_MAX, of course).

Environment Variables - 6

Tools
Each Unix shell provides tools (not always the same) to create an environment variable and assign (or

reassign) it a value, remove that value, and report an environment variable's current value.

CREATE or SET:
In CSH, use

setenv VARIABLE value

to add the variable VARIABLE to the environment of all subsequently executed commands and to assign
value to that variable (or to change the value of an existing environment variable). For example,

 setenv PRINTER p280

In SH, use

export VARIABLE=value

to do the same (note that there are no spaces flanking the equals sign here). For example

 export PRINTER=p280

In KSH, use the two commands

VARIABLE=value

export VARIABLE

together to fill the same role. For example

 PRINTER=p280
 export PRINTER

Note that at LLNL on BlueGene/L only, any environment variables set with these standard commands will
not be visible to application programs launched using MPIRUN. MPIRUN-executed programs on BG/L
can only access environment variables that you have overtly declared in the quoted, blank-delimited
argument to MPIRUN's -env option. For example,

mpirun -env "BGLMPI_ALLREDUCE=MPICH BGL_APP_L1_WRITE_THROUGH=1" ...

Environment Variables - 7

REMOVE VALUE:
In CSH, SH, or KSH, the same command removes the previously assigned value of a declared environment
variable:

unset VARIABLE

For example,

 unset PRINTER

leaves PRINTER without a value. You need not UNSET a variable before assigning it a new value. In
CSH only, a further command (UNSETENV) actually deletes the specified variable from the execution
environment altogether:

unsetenv VARIABLE

REPORT VALUE:
In CSH, SH, or KSH, the same command displays the currently assigned value (if any) of a specified
environment variable:

printenv VARIABLE

For example,

 printenv PRINTER

returns the string (such as 'p280') currently stored in PRINTER. All three shells also return the environment
variable's value in response to either of these uses of the ECHO command

 echo $VARIABLE
 echo "$VARIABLE"

while these other invocations

 echo \$VARIABLE
 echo '$VARIABLE'

only return the literal string $VARIABLE (e.g., $PRINTER) rather than the value currently stored in
VARIABLE (e.g., p280).

Environment Variables - 8

Security Issues
Misuse of environment variables is a security concern on some (usually user-administered) Linux

computer systems because:

• There is no length limit on the string that can be stored in an environment variable, then extracted
later by some malware program for inappropriate purposes.

• Environment variables are stored as an array of pointers to character strings of the form
VARIABLE=value. On some (poorly administered) Linux systems it is possible to insert more than
one VARIABLE=value string (for the same variable), each with a different value, into that array. A
program could then test on the first value but actually retrieve a very different value later.

LC systems, including those that run CHAOS (the locally enhanced version of Linux), all take general
administrative precautions to avoid common security problems arising from environment variable misuse.
For example, although their number seems large, LC actually limits to a modest set the universe of
environment variables used by the operating system (page 10) or system-set to guide user programs (page
13), as later sections of this manual explain. So the drastic measures sometimes suggested elsewhere, such
as unsetting all environment variables at the start of your session, are neither necessary nor appropriate in
LC's high-performance computing environment. Likewise, the Livermore Computing Resource Management
(LCRM) system, which manages batch jobs on LC production machines, carefully controls the environment
variables to which each job is exposed (see the details below (page 30)). So if you use environment variables
responsibly yourself, the LC software environment is unlikely to pose security problems for you based on
environment variable values.

Because of its unusual role in specifying dynamically linked libraries, environment variable
LD_LIBRARY_PATH is sometimes mentioned as as special source of security problems. For LC's policy
on this variable and strategy for best use, see the "LD_LIBRARY_PATH Details" section below (page
46).

Environment Variables - 9

Kinds of Environment Variables at LC
A complex UNIX computing environment may involve hundreds of distinct environment variables

with specific, sometimes obscure or overlapping uses. This section divides the most important environment
variables on LC production machines into broad kinds based on how they are usually set or used (e.g., by
the system, by you, to manage batch jobs, etc.).

System Variables
These environment variables are important for proper functioning of the operating system (AIX or

CHAOS) but most user applications in most situations can ignore them.

General system variables:

ACLOCAL_PATH

AUTHSTATE

BRIDGE_CONFIG_FILE

DB2INSTANCE

DB_PROPERTY

DCE_SEC_KEYMGMT_WAKEUP_INTERVAL

DSHPATH

GNOME2_PATH

GTK_PATH

G_BROKEN_FILENAMES

IC

INFOPATH

INTEL_LICENSE_FILE

JAVA_BINDIR

JAVA_HOME

JAVA_ROOT

Environment Variables - 10

JRE_HOME

K5MUTE

LM_LICENSE_FILE

LSTC_LICENSE_SERVER

MAIL

MMCS_SERVER_IP

MP_S_POE_AFFINITY

(LC default is YES) enables the TotalView debugger to work on some AIX systems
(e.g., Purple) where unexpected incompatibilities had stopped it (not for users, not
an optimization control like MP_TASK_AFFINITY (page 26)).

ODMDIR

PKG_CONFIG_PATH

RPC_RESTRICTED_PORTS

RPC_UNSUPPORTED_NETIFS

TKG_LMHOST

TRY_PE_SITE

VT_THREADS

VWSPATH

Environment Variables - 11

System variables that support Dotkit:

DK_NODE is an ordered list of top-level directories that contain Dotkit packages.

DK_ROOT is the directory that contains the scripts that Dotkit executes.

DK_SUBNODE is an ordered list of subdirectories in each DK_NODE directory that contain Dotkit
packages.

DK_UEQRU (default is 1) ???

FPATH ???

_dk_inuse (default is 0) is a list of currently invoked Dotkit packages.

_dk_isatty ???

_dk_rl ???

_dk_shell is the user's current shell.

Environment Variables - 12

Get-Only Variables
These environment variables are set by system software so they can be queried by user applications

(to discover the software context). But their values should not be changed by user programs. LC system
administrators manage these environment variables for you to increase your chances of reliable production
runs and to minimize potential security problems.

ENVIRONMENT

is either INTERACTIVE or BATCH, depending on whether you or LCRM is managing
the session. Starting in February, 2006, LCRM will execute your batch job even if
you (foolishly) change ENVIRONMENT to INTERACTIVE in your job script.

HOME is the pathname of the user's home directory.

HOST_GRP contains a string that all "like" LC machines share to identify their similar software
context (for updates or run control during batch jobs). For example, all LC CHAOS
machines, open and secure, have "linux" as their HOST_GRP. See also the relevant
section (URL: http://www.llnl.gov/LCdocs/chome/index.jsp?show=s2.2) of the
Common Home Reference Manual.

HOSTNAME is the name of the user's current login node (e.g., mcr37).

LOGIN is the sequence number of the current session (e.g., 1).

LOGNAME is the user's login name (e.g., tomk) on this machine (same as USER but used by
System-V-derived UNIX software).

NETWORK (Tru64 machines only; not used with AIX or Linux/CHAOS) specifies the security
flavor of the local network, where possible values are OCF (open network) and SCF
(secure network).

SHELL is the absolute pathname of the current shell (e.g., /bin/csh).

SSH_CLIENT (set by OpenSSH) is a space-delimited sequence containing the IP address and port
number where the SSH client runs (where the incoming SSH connection originates),
followed by the port number of the SSH server that handles this connection.

SSH_CONNECTION

(set by OpenSSH) contains a space-delimited list of the IP address of the client, the
client's port number, the IP address of the server, and then the server's port number
(used to maintain connection security).

SSH_TTY (set by OpenSSH) contains the absolute pathname (e.g., /dev/pts/53) of the TTY
device used for the shell when your SSH connection was created.

Environment Variables - 13

http://www.llnl.gov/LCdocs/chome/index.jsp?show=s2.2

SYS_TYPE contains a string that all LC machines with the same (specific version of the) operating
system share, to allow unambiguous testing to discover the operating context for an
application. For example, MCR now has chaos_3_x86_elan3 and its SYS_TYPE.
See also the relevant section (URL:
http://www.llnl.gov/LCdocs/chome/index.jsp?show=s2.2) of the Common Home
Reference Manual.

USER is the user's login name (e.g., tomk) on this machine (same as LOGNAME, but used
by BSD-derived UNIX software).

Environment Variables - 14

http://www.llnl.gov/LCdocs/chome/index.jsp?show=s2.2

User-Setable Variables
These environment variables are both set and queried by user scripts and applications, usually to

customize the software context. Some have "standard" default values and others are assigned a "best" local
value by the system administrators on LC production machines (there are many more similar environment
variables that are available to users but that LC does not preset to any value).

Different users with different computing needs or goals may find different value changes appropriate.
For the first subgroup, user customization typically involves appending strings (usually pathnames) to an
existing value. For the second subgroup, user customization typically involves replacing one value (often
numeric or Boolean) with an alternative. In each group, the first few variables, set off from the main
alphabetical list, are the most frequently customized by users.

Besides these general-purpose user-setable environment variables, many others are indirectly set for
special task control and resource allocation purposes whenever you run SLURM's SRUN job-execution
tool. Those SLRUM variables and their relation to SRUN options are explained separately below (page
40).

Append Values

Customize these user-setable environment variables by APPENDING to their existing value:

LD_LIBRARY_PATH

(Linux/CHAOS only; for AIX see LIBPATH) specifies a colon-delimited list of
directories for the linker to check (in order) to find dynamically linked libraries.
Correct use of this variable is complex; see the special comments below (page 46).

LIBPATH (AIX only; for Linux/CHAOS see LD_LIBRARY_PATH) specifies a colon-delimited
list of directories for the linker to check (in order) to find dynamically linked libraries.

PATH specifies a colon-delimited list of directories for the shell to search, in order of
preference, to find programs to execute (this is your "search path").

CLASSPATH specifies where to find the class libaries needed for the Java Virtual Machine and
other Java applications.

LOCPATH supports C-program localization ("locale" use, which determines the allowed
characters, collating sequence, and handling of time, date, monetary, and numeric
strings).

MANPATH specifies the directories for the shell to search, in order of preference, to find MAN
pages to deliver.

NLSPATH supports C-program localization ("locale" use, which determines the allowed
characters, collating sequence, and handling of time, date, monetary, and numeric
strings).

Environment Variables - 15

PERL5LIB specifies the absolute pathname for the local Perl library (usually a child of
/usr/local/lib).

XLOCALEDIR

specifies the absolute pathname of the local library that supports X11 use.

Environment Variables - 16

Replace Values

Customize these user-setable environment variables by REPLACING their existing value:

DISPLAY contains the address of the local workstation where you want output from X-Windows
applications to display.

TERM specifies the type of terminal (e.g., xterm-color) for which output is needed.

AIXTHREAD_COND_DEBUG

(default is OFF) toggles keeping a list of (Pthreads) condition variables to assist with
debugging threaded programs.

AIXTHREAD_MINKTHREADS

overrides the AIXTHREAD_MNRATIO environment variable (next). This allows
you to manually specify the minimum number of active kernel threads (default follows
from MNRATIO). The library scheduler will not reclaim kernel threads below this
number.

AIXTHREAD_MNRATIO

specifies the ratio of pthreads (M) to kernel threads (N). AIXTHREAD_MNRATIO
is examined when the system creates a pthread to determine if a kernel thread should
also be created to maintain the correct ratio. You can set this environment variable
by supplying a value of the form

 p:k

where k is the number of kernel threads the system uses to handle p (user) pthreads.
You may specify any positive integer for p and k, but these values are used in a formula
that employs integer arithmetic and this results in the loss of some precision when
big numbers are specified. (See also AIXTHREAD_MINKTHREADS, above.)

Defaults:
If k is greater than p, the ratio is treated as 1:1.
If you specify no value, the default depends on the default contention scope.
If system scope contention is the default, the ratio is 1:1.
If process scope contention is the default, the ratio in 8:1.

AIXTHREAD_MUTEX_DEBUG

(default is OFF) toggles keeping a list of (Pthreads) active mutexes to assist with
debugging threaded programs.

Environment Variables - 17

AIXTHREAD_RWLOCK_DEBUG

(default is OFF) toggles keeping a list of (Pthreads) read-write locks to assist with
debugging threaded programs.

AIXTHREAD_SCOPE

sets the contention scope of pthreads created using the default pthread attribute object
(for background on contention scope, see the "Alternative Thread Implementation
Models" section of the Pthreads Overview (for LC) (URL:
http://www.llnl.gov/LCdocs/pthreads). You can specify either of two exclusive values
for this variable:

P indicates process scope (the default).

S indicates system scope.

AIXTHREAD_SLRATIO

determines the number of kernel threads used to support local pthreads sleeping in
the library code while awaiting a pthread event, for example, attempting to obtain a
mutex (discussed in the "Synchronization" section of LC's Pthreads Overview (URL:
http://www.llnl.gov/LCdocs/pthreads/index.jsp?show=s8)). The reason to maintain
kernel threads for sleeping pthreads is that, when the awaited pthread event occurs,
the pthread will immediately need a kernel thread to run on. Using a kernel thread
that is already available is more efficient than creating a new kernel thread after the
event has taken place.

You can set this environment variable by supplying a value of the form

 k:p

where k is the number of kernel threads to reserve for every p sleeping (user) pthreads.
WARNING: the relative positions of k and p are reversed here from the ratio used to
assign a value to AIXTHREAD_MNRATIO. You may specify any positive integer
for p and k, but these values are used in a formula that employs integer arithmetic
and this results in the loss of some precision when big numbers are specified. (See
also AIXTHREAD_MINKTHREADS, above.)

Defaults:
If k is greater than p, the ratio is treated as 1:1.
If you specify no value, the default ratio is 1:12.

BGL_APP_L1_SWOA

(BG/L only) controls overwriting the L1 cache memory. On BG/L, each CPU has a
fast, 32-kbyte local cache (L1), and both CPUs on a chip share a larger but slower
prefetch cache (L2) as well as another 4-Mbyte cache (L3). BGL_APP_L1_SWOA
toggles the "store-without-allocate" feature of the L1 cache as follows:

Environment Variables - 18

http://www.llnl.gov/LCdocs/pthreads
http://www.llnl.gov/LCdocs/pthreads/index.jsp?show=s8

0 (default, disables SWOA) instructs each CPU to load the cache line
into L1 and perform a read-modify-update. This sacrifices the former
contents of L1.

1 (enables store-without-allocate, SWOA) loads the cache line into
the L3 cache instead of L1. L3 performs the read-modify-update
and so this preserves the contents of L1. Codes that depend heavily
on the use of L1 sometimes perform much better with SWOA
enabled.

BGL_APP_L1_WRITE_THROUGH

(BG/L only) controls writethrough (immediate backend copying) of the L1 cache.
Jobs on BG/L that encounter a parity error in the 32-kbyte L1 cache (that is local to
each CPU) promptly die. At LLNL, full-system runs have only about a 6-hour mean
time to failure from such L1 errors. BGL_APP_L1_WRITE_THROUGH toggles
your response to this problem as follows:

0 (default) disables L1 writethrough (copying waits for a threshold so
restoring L1 from a copy usually fails). In this case, every L1 parity
error kills your job.

1 enables L1 writethrough for the current job. This can be inefficient
(it often incurs a 10% to 40% performance penalty), but it virtually
eliminates machine stops and job death when L1 parity errors occur.

BGLMPI_COLLECTIVE_DISABLE

(BG/L only) controls which implementation is used for eight MPI collective operations
(ALLGATHER, ALLGATHERV, ALLREDUCE, ALLTOALL, ALLTOALLV,
BARRIER, BCAST, and REDUCE) managed as a set. The choices are:

0 (default) uses optimized collective routines for all eight operations
(usually improves application performance).

1 disables optimization and uses MPICH routines instead for all eight
operations. This can let you work around unexpected errors that
seem related to collective operations, but with a performance penalty.
To change implementation details for any single specific collective
routine on BG/L, use one of the eight specific environment variables
(with a shared syntax) described at BGLMPI_COLLECTIVE below.

BGLMPI_COLLECTIVE

(BG/L only) represents eight environment variables (listed below) with a common
syntax whose role is to each control which implementation is used for one of eight
MPI collective operations on BG/L (to toggle all eight collectives at once, use
BGLMPI_COLLECTIVE_DISABLE above). Each BGLMPI_COLLECTIVE
environment variable can be used in three ways:

Environment Variables - 19

(1) Disable Optimization.
Set the variable's value to MPICH to disable the corresponding optimized collective
routine and instead invoke the "safe" MPICH algorithm for that collective operation
(same effect individually that BGLMPI_COLLECTIVE_DISABLE=1 has globally).

(2) Specify a Network.
Set the variable's value to the BG/L network that you prefer for this collective operation
(for example, BGLMPI_BCAST=TREE). Available network choices are GI (global
interrupt), TREE, and TORUS (but not all values work for all eight environment
variables). The default network for each collective operation comes first in the list
assigned to it below. Some collectives accept an optional "packet inject parameter"
(whose default is 3) for the TORUS value.

(3) Provide a Failover Sequence.
Leave the variable's value blank (unset) and BG/L will try each alternative in order
in the comma-delimited list below associated with each of the eight MPI collective
operations (for example, for ALLREDUCE the failover sequence will be first TREE,
then TORUS, then MPICH).

The eight BG/L collective environment variables and the associated possible values
for each one are:

BGLMPI_ALLGATHER={TORUS:3,MPICH}

BGLMPI_ALLGATHERV={TORUS:3,MPICH}

BGLMPI_ALLREDUCE={TREE,TORUS,MPICH}

BGLMPI_ALLTOALL={TORUS:3,MPICH}

BGLMPI_ALLTOALLV={TORUS:3,MPICH}

BGLMPI_BARRIER={GI,TREE,TORUS,MPICH}

BGLMPI_BCAST={TREE,TORUS}

BGLMPI_REDUCE={TREE,TORUS,MPICH}

BGLMPI_EAGER

(BG/L only; default is 1000) specifies (with an integer value nnnn) the size in bytes
of the interprocess message at which BG/L switches from using the eager to the
rendezvous protocol. The eager protocol sends data asynchronously and immediately
to the destination (fast but sometimes problem prone), while the rendezvous protocol
sends data only when requested by the destination. By default, messages sized less

Environment Variables - 20

than or equal to 1000 bytes use the eager protocol, and messages sized 1001 bytes or
greater use the rendezvous protocol.

BGLMPI_MAPPING

(BG/L only) controls the mapping of MPI processes to physical CPUs to make the
most of BG/L's unusual features for point-to-point communication. The two mapping
alternatives are:

XYZT (default) maps the MPI tasks to the first CPU on each node using
(x,y,z) order (for co-processor mode, where only one CPU/node
computes), and then uses the same order for assigning tasks to the
second CPU on each node (for virtual-node mode, where both CPUs
compute).

TXYZ maps the MPI tasks in consecutive pairs to the two CPUs on the first
node, then by pairs to each other node in (x,y,z) order (so that task0
and task1 go to the two CPUs on node0, task2 and task3 go to the
two CPUs on node1, etc.). This method guarantees two tasks/node
in virtual-node mode, sometimes a performance enhancer.

BGLMPI_PACING

(BG/L only) toggles the use of flow control (packet pacing) for interprocess messages
larger than 1000 bytes (BG/L "rendezvous messages," see also BGLMPI_EAGER).
MPI applications that heavily use collectives (such as LINPACK) seldom benefit
from packet pacing, but applications that send large messages point to point may see
big performance gains. The choices are:

YES (default) enables packet pacing with a "pacing window" size of 16.

NO disables packet pacing.

BGLMPI_RVZ (BG/L only) is the same as BGLMPI_EAGER, explained above (page 20).

BGLMPI_RZV (BG/L only) is the same as BGLMPI_EAGER, explained above (page 20).

CHECKPOINT (default is NO) if set to YES enables job checkpointing on AIX machines that also
use SLURM instead of LoadLeveler. See the "Checkpointing with SLURM and POE"
section (URL: http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s7.5) of LC's LCRM
Reference Manual for full details on the correct use of this and its related variables.

CVSUMASK specifies the file permissions (e.g., 007) assigned to new directories and their contents
that are managed by the Concurrent Versions System (CVS).

CVS_RSH specifies an external program (usually RSH or SSH) for connecting to the Concurrent
Versions System server.

EDITOR specifies the pathname of the user's preferred text editor.

Environment Variables - 21

http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s7.5

LANG (default at LC is en_US) specifies the "locale" (for localization) if all other LC_
variables are not assigned.

LC_ALL specifies the "locale" (for localization) and overrides any other LC_ variables that
may have been assigned.

LC_FASTMSG

specifies the language for localization of system messages.

LDR_CNTRL

(AIX only) specifies whether or not a program uses "large pages" of memory on LC
AIX systems that offer them. Standard memory pages are 4 kbyte (good for shell
scripts and interactive codes), while large pages are 16 Mbyte (good for
memory-intensive MPI batch jobs). For a related variable that controls how AIX
responds to MPI applications that try to run without enabling large-memory pages,
see MP_TLP_REQUIRED (page 27) below. Possible LDR_CNTRL values are:

LARGE_PAGE_DATA=N

(default) specifies that programs not use large memory pages (same
as invoking compiler or linker option -bnolpdata). Memory-intensive
programs that exhaust paging space (small-page memory written to
the local hard disk) are terminated by the operating system.

LARGE_PAGE_DATA=Y

specifies that programs use large memory pages for data and heap
(but not stack) segments (same as invoking compiler or linker option
-blpdata). Once large pages are exhausted, small pages will be used.

LARGE_PAGE_DATA=M

("mandatory" mode) specifies that programs use only large memory
pages for data and heap (but not stack) segments. Once large pages
are exhausted, the code terminates.

LESS allows users of the text-display tool LESS to store options for LESS (e.g., -ie), that
will be invoked automatically whenever they execute LESS.

LESSOPEN specifies a local "input preprocessor" for LESS (such as /usr/bin/lesspipe.sh), which
allows LESS to display more diverse file types (including even TAR and some graphics
files).

LIBELAN_GALLOC_EBASE

(default value: 0xb0000000) resizes the Elan global memory heap for MPI collective
operations. EBASE is a pointer to a base virtual address in Elan memory to be used
for the global heap. (Set this variable and the next two if you use MPI collectives,

Environment Variables - 22

such as REDUCE, GATHER, SCATTER, or their ALL versions, with more than
about 100 processes.)

LIBELAN_GALLOC_MBASE

(default value: 0xb0000000) resizes the Elan global memory heap for MPI collective
operations. MBASE is a pointer to the main memory base in Elan memory to be used
for the global heap.

LIBELAN_GALLOC_SIZE

(default value: 16777216) resizes the Elan global memory heap for MPI collective
operations. SIZE is the size in bytes of the Elan global heap.

LIBELAN_WAITTYPE

(suggested value: POLL) specifies how a blocking MPI process will share computing
resources (comparable to MP_WAIT_MODE under POE on IBM machines). Possible
values are:

POLL (default) has the receiving thread actively poll for incoming
messages. Use this choice for all MPI jobs on clusters that have a
Quadrics interconnect.

SLEEP has the receiving thread sleep and thus remove itself from the active
dispatching queue.

YIELD has the receiving thread stay in the queue but yield the processor if
it has no work to do.

LLAPIERRORMSGS

(default at LC is YES on AIX machines that use LoadLeveler instead of SLURM)
toggles the display of messages from LoadLeveler about errors detected in its
configuration file.

LS_COLORS (Linux/CHAOS only) specifies a colon-delmited list of codes (each a suffix-number
equation) that tell LS which colors to use for which file types during display to your
terminal. DIRCOLORS is the utility that manages this environment variable.

MAILMSG (default on AIX is 'You have new mail') is the message displayed when new mail
arrives on this system.

MALLOC_TRIM_THRESHOLD

(suggested value: -1) see the next item for joint use.

MALLOC_MMAP_MAX

(suggested value: 0) when combined, MALLOC_TRIM_THRESHOLD and
MALLOC_MMAP_MAX force MALLOC to use SBRK() rather than MMAP() to

Environment Variables - 23

allocate memory. This improves performance, but it may reduce the total amount of
memory available to your user processes (to no more than 1 Gbyte/process).

MANPAGER specifies the pager (text display program) used when you invoke MAN. MANPAGER,
if set, overrides the value of PAGER, which MAN uses otherwise.

MEMORY_AFFINITY

(AIX only) tells an AIX processor where to get memory, where the choices are:

MCM makes both private and shared memory local to the processor's
"multichip module" (MCM, see MP_TASK_AFFINITY (page 26)
for details). This choice is recommended for MPI jobs on Purple.

SHM=RR stripes both System-V and POSIX real-time memory across multiple
MCMs (only works for 64-bit systems).

LRU=EARLY starts the LRU daemon using local memory as soon as its low
threshold is reached, without waiting for all system pools to reach
their low thresholds also.

MP_BULK_MIN_MSG_SIZE

(default is 150000) specifies the message size in bytes above which bulk (AIX remote
direct memory access, RDMA) transfers can begin (but see also
MP_USE_BULK_XFER (page 27)). You can specify any value greater than or equal
to 4000 (for Purple, 131200 is recommended for MPI optimization).

MP_CKPTDIR (only on AIX machines that also use SLURM instead of LoadLeveler) specifies the
absolute pathname of the directory to receive checkpoint files. See also
MP_CKPTFILE.

MP_CKPTFILE (only on AIX machines that also use SLURM instead of LoadLeveler) overrides
MP_CKPTDIR and specifies an absolute pathname for checkpoint files. See the
"Checkpointing with SLURM and POE" section (URL:
http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s7.5) of LC's LCRM Reference
Manual for the full story on using these variables correctly for job checkpointing.

MP_COREFILE_FORMAT

(coresponds to the POE -corefile_format flag on AIX machines) specifies the format
for corefiles generated when any of your processes terminate abnormally (this variable
is especially suited for managing parallel programs). Possible values are:

[unset] generates a standard AIX corefile for abnormal termination.

STDERR sends the corefile contents to standard error for abnormal termination.

Environment Variables - 24

http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s7.5

any.other.string generates a lightweight corefile for abnormal termination. The string
CORE.LIGHT, and hence this format alternative, is the default on
LC's AIX machines.

MP_COREFILE_SIGTERM

(default is NO) prevents unexpected and undesirable core dumps that otherwise occur
when you kill a parallel job (using PRM) or when a parallel job exits by calling
MPI_Abort. Value YES allows such core dumps.

MP_CPU_USE

(interactive jobs only) specifies whether or not your job is willing to share a node's
CPU with other jobs, where the choices are UNIQUE (no node sharing, the default
at LC and in general for nonspecific node allocation of US communication jobs) or
MULTPLE (the nonLC default for IP jobs).

MP_CSS_INTERRUPT

(default is NO) specifies whether or not arriving message packets cause interrupts.
On Purple, applications that use nonblocking sends/receives or that have
nonsynchronized send/receive pairs may improve their performance by setting
MP_CSS_INTERRUPT to YES (also, this variable interacts with
MP_POLLING_INTERVAL (page 26)).

MP_EUILIB specifies which of two protocols should be used for task communications, where the
choices are:

US selects User Space protocol, the default on LC SP systems, and the
faster of the two choices.

IP selects Internet Protocol.

MP_HOSTFILE

(not used on LC SP systems) specifies the name of a file that contains the domain
names of each node to use during specific node allocation (set to NULL by default
at LC).

MP_INFOLEVEL

specifies the level of messages reported as an aid to debugging, where the choices
are
0 (error messages only),
1 (warning and error, the default at LC),
2 (informational, warning, and error),
3 (above plus diagnostic),
4, 5, 6 (above plus more elaborate diagnostic messages used by the IBM Support
Center).

Environment Variables - 25

MP_LABELIO

specifies whether or not output from the parallel tasks is labeled by taskid, where the
choices are YES (the default at LC) or NO.

MP_POLLING_INTERVAL

specifies the polling interval in microseconds, that is, the delay until an MPI pthread
wakes up to check for arriving messages. For US protocol the default is 400000 and
for IP protocol the default is 180000 (see also MP_EUILIB (page 25)). On Purple,
codes that are not interrupt driven (do not use MPI-IO, 1-sided MPI calls, parallel
ESSL, or MP_CSS_INTERRUPT=YES) can optimize performance by setting
MP_POLLING_INTERVAL to a value between 30000000 and 60000000 (30 to 60
seconds).

MP_RESD (interactive jobs only) specifies whether or not LoadLeveler (or SLURM on PU) or
the individual user should allocate nodes to this job (ignored for batch jobs), where
the choices are:

YES has LoadLeveler allocate the nodes (called nonspecific node
allocation, this is the default at LC).

NO has the user allocate the nodes (called specific node allocation, not
used on LC machines).

MP_RMLIB specifies the IBM resource management library (so for LC AIX machines that use
SLURM instead of LoadLeveler to manage resources, MP_RMLIB is overtly unset).

MP_SHARED_MEMORY

specifies whether tasks running on the same node should use shared memory (yes,
the default) or the SP switch (no) for MPI message passing. Shared memory is faster
for some codes, but the overhead may decrease the performance of others.

MP_SINGLE_THREAD

avoids mutex lock overhead (often a significant optimization) if your program really
is single threaded. The choices are:

YES for single-threaded codes.

NO for any threaded (OpenMP, Pthreads, or MPI-IO) program.

MP_TASK_AFFINITY

constrains each task of a parallel job, and all of its threads, to run within a specified
"multichip module" (MCM, a node with 4 Power5 chips and 8 CPUs, plus local
memory, an I/O interface, and a network adapter). Value choices are:

Environment Variables - 26

MCM allocates tasks round robin among the MCMs attached to the job by
the resource manager. Tasks stay on the same MCM for the job's
duration (recommended for nonOpenMP codes run on Purple).

SNI (User Space MPI jobs only) allocates tasks to the MCM in common
with the first adapter assigned to the task by the resource manager.

mcmlist specifies (by MCM numbers) a set of logical MCMs to which tasks
are assigned round robin (not valid where LoadLeveler is also used).

-1 disables task affinity (use this or unset MP_TASK_AFFINITY for
OpenMP jobs run interactively).

MP_TLP_REQUIRED

(AIX only) controls the system response if you run any MPI application without
enabling large-memory pages. The reasons for using large pages on LC AIX machines
are explained in the "Enabling Large-Memory Pages" section (URL:
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.5) of the POE User Guide. The
environment variable that toggles large-page use is LDR_CNTRL (page 22), explained
above. What happens if an MPI code tries to run without large pages depends on the
value of MP_TLP_REQUIRED, where the three alternatives are:

WARN (default) causes AIX to issue a warning message when the MPI
application starts and again once for every task launched. The
message text is:

0:ATTENTION: 0031-522 current process
does not use large pages, continuing.

The application continues to run but this may cause it or the entire
cluster to fail later, disrupting the work of all users. If you receive
this warning message, you should stop your own job and rerun it
with large pages enabled.

KILL terminates any MPI application that starts to execute without large
pages (useful as a strong safeguard against flawed runs).

(unset) avoids both termination and warnings (intended only for
those very unusual MPI situations that cannot use large pages for
technical reasons and that have system-administrator permission to
run with only small pages).

MP_USE_BULK_XFER

(default is NO) enables (YES) or disables (NO) reduced-overhead message transfer
using AIX remote direct memory access (RDMA). If YES, recommended for
optimization on Purple, then messages with length greater than
MP_BULK_MIN_MSG_SIZE (page 24)) use bulk-transfer RDMA, while those

Environment Variables - 27

http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.5

shorter than that threshold still use packet-mode transfer. IBM warns that not all
communication libraries honor this environment variable.

OBJECT_MODE

distinguishes (values are either 32 or 64) among AIX systems with the same
SYS_TYPE but different (32-bit or 64-bit) executables (for compiler selection).

PAGER (default is MORE) specifies the prefered text-file display tool.

PS1 specifies the string used as your primary shell prompt.

PSTAT_CONFIG

(no default) stores a comma-delimited list of arguments (field names) for PSTAT's
-o option, so you can easily, repeatedly ask for the same customized job status report
when you use PSTAT to check on a batch job. For an alphabetical, explanatory list
of allowed field names for -o (and hence for PSTAT_CONFIG), see the "Run
Properties of Batch Jobs" section (URL:
http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=4.2b) of LC's LCRM Reference
Manual.

SPINLOOPTIME

(no default) specifies the number of times that the system will try to get a busy lock
without taking a secondary action, such as calling the kernel to yield the processor.
Manipulating SPINLOOPTIME can be helpful on SMP systems, where the lock might
be held by another actively running pthread and will soon be released. On uniprocessor
systems this value is ignored.

TERMCAP supports character-cell terminals and printers (retained only for backward compatibility
with some older programs).

TMP specifies the pathname of a temporary directory (often the same as TMPDIR) for
application programs.

TMPDIR (default is /usr/tmp) specifies the pathname of a temporary directory for utility
intermediate files (such as the temporary files made when SORT or HTAR runs).

TZ specifies the local time zone (US/Pacific).

XCURSOR_THEME

controls the contrast and transparency of the cursor (and, in some applications, also
the text) displayed on X-windows terminals.

YIELDLOOPTIME

(no default) specifies the number of times that the system yields the processor when
trying to acquire a busy mutex or spin lock (see the Synchronization (URL:

Environment Variables - 28

http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=4.2b
http://www.llnl.gov/LCdocs/pthreads/index.jsp?show=s8

http://www.llnl.gov/LCdocs/pthreads/index.jsp?show=s8) section of the Pthreads
Overview manual for details) before going to sleep on the lock. YIELDLOOPTIME
can be helpful for complex applications where multiple locks are in use.

YOGRT_DEBUG specifies the level of debugging messages returned to STDERR by the portable
get-time-remaining library LIBYOGRT. The default level is 0 (no debug messages)
and the highest supported level is 3.

YOGRT_REMAINING

specifies an integer number of seconds (for example 3600 = 1 hour) from which calls
to the LIBYOGRT routine yogrt_remaining will count down instead of counting down
from the actual remaining job time reported by SLURM, Moab, or LCRM (depending
on LIBYOGRT's context). For a discussion of LIBYOGRT use see the LIBYOGRT
section (URL: http://www.llnl.gov/LCdocs/moab/index.jsp?show=s5.2) of the Moab
at LC user guide.

Environment Variables - 29

http://www.llnl.gov/LCdocs/moab/index.jsp?show=s5.2

Batch-Job Environment Variables
The Livermore Computing Resource Management (LCRM) system uses environment variables (including

some discussed in previous sections, but not limited to those) to manage your batch jobs and to run those
jobs successfully on your target machine. LCRM divides the batch-relevant environment variables into
four disjoint sets (and you can optionally set others and pass their values to your job when you submit it
if you wish).

The first subsection below (page 30) identifies, lists the members of, and briefly explains the four
default sets of LCRM-relevant environment variables. The second subsection below (page 37) then refers
to those sets when it tells how LCRM handles various environment variables at job submittal and later at
job execution (including the order in which their values are assigned for each batch job run). Environment
variables used by SLURM, and set by SLURM's SRUN utility, serve to control tasks and their resources
"below LCRM," within each LC cluster environment. Hence, they are (mostly) listed and explained in a
separate subsection (page 40) of their own.

Environment Variables Known to LCRM

On LCRM-scheduled machines:
For every batch job that LCRM manages, it interacts with four disjoint sets of environment variables as
follows (independent of any others declared by each job's owner):

 A. SUBMITTAL environment variables--
 Those that LCRM creates from your job and its
 environment when you run PSUB.
 B. EXECUTION environment variables--
 Those that LCRM sets for your job in the job's
 execution environment.
 C. UNSET environment variables--
 Those that LCRM unsets for your job
 when the job executes.
 D. DEPRECATED environment variables--
 Formerly important for LCRM but now replaced
 by others in sets A, B, or C.

Each subsection below explains one of these four sets, names each environment variable in that set
(alphabetically), and briefly describes its role for LCRM.

On Moab-scheduled machines:
On LC production machines where Moab has replaced LCRM, environment variable handling depends on
whether you submit your batch job using the PSUB emulator or the native MSUB tool. See the "Environment
Variables" section (URL: http://www.llnl.gov/LCdocs/moab/index.jsp?show=s2.3) of the Moab at LC user
guide for details.

Environment Variables - 30

http://www.llnl.gov/LCdocs/moab/index.jsp?show=s2.3

A. Submittal Variables

LCRM creates these environment variables from your job and its submittal environment on the machine
where you execute PSUB. The goal is to preserve values of environment variables on the submitting host
(that is, key features of the job's submittal environment) because these may change as the job runs, or may
be different in the job's executing environment. Some additional submittal variables contain LCRM-specific
data about the job (such as its ID string). All of these variables (and hence their values) are passed to your
running job by LCRM.

PSUB_DEP_JOBID

is the LCRM identification number for the job (if any) on which this job depends.

PSUB_HOME is set to $HOME on the host where you ran PSUB.

PSUB_HOST contains the name of the host where you ran PSUB.

PSUB_JOBID is the LCRM job identifier.

PSUB_LOGNAME

is set to $LOGNAME on the host where you ran PSUB.

PSUB_PATH is set to $PATH on the host where you ran PSUB.

PSUB_REQNAME

contains the (specified or implied) job name.

PSUB_SUBDIR contains the name of the directory where you ran PSUB on the submittal host.

PSUB_TZ_ENV is set to $TZ on the host where you ran PSUB.

PSUB_USER is set to $USER on the host where you ran PSUB.

SESSARGS contains the arguments that you used when you ran PSUB to submit your job.

Environment Variables - 31

B. Execution Variables

LCRM automatically sets these environment variables for your job when the job starts in your specified
execution (not submittal) environment. (To set others as well, see the discussion of PSUB's -x option in
the next section (page 37).

Some of these LCRM execution variables are normally set by the operating system for any shell (HOME,
LOGIN, USER). See the "Get-Only Variables" section (page 13) above. Others are normally set by each
user (PATH, TZ). See the "User-Setable Variables" section (page 15) above. Still others have special roles
(SLURM-JOBID, MPIRUN_PARTITION) and are useful if and only if specific job-support software (such
as SLURM) comes into play.

ENVIRONMENT

is always set to the uppercase string BATCH. Starting in February, 2006, LCRM will
run your batch job even if your script (foolishly) resets ENVIRONMENT to
INTERACTIVE.

HOME specifies your home directory on the execution host.

LOADL_ACTIVE

is the current version of LoadLeveler on the execution host (if LoadLeveler is used
instead of SLURM).

LOADLBATCH is set to YES to help LoadLeveler avoid conflicts with other environment variables
that it and your job might share.

LOGIN is your LC user name (same as LOGNAME, and different from the interactive use
of this variable to hold the sequence number (e.g., 1) of this login session).

LOGNAME is your LC user name (same as USER but used by System-V-derived UNIX software).

LCRM_SERIESID

stores this job's "series ID," used internally by LCRM to distinguish different jobs
that end up with the same job ID when the ID numbers have "wrapped around" and
started to repeat.

LRM_GLOBAL_SESSION_ID

is the machine and process ID of this job's "leader" process.

MPIRUN_NOALLOCATE

helps manage MPI jobs on BlueGene/L, where it is set to TRUE.

MPIRUN_NOFREE

is set to YES (to TRUE on BlueGene/L), same as using -nofree on the MPIRUN
execute line.

Environment Variables - 32

MPIRUN_PARTITION

supplies block information to MPIRUN, which is used to launch parallel tasks
successfully on BlueGene/L.

PATH is set to /bin:/usr/bin by default (which you can alter or expand with other pathnames).

PCS_TMPDIR specifies the location of a temporary directory that LCRM creates when your job
starts, that persists during the whole job, and that is automatically purged when the
job completes. System administrators configure the directory name, or disable it.

PSUB_WORKDIR

contains the same value as PCS_TMPDIR if that environment variable is set.
Otherwise, contains the pathname of your home directory ($HOME) on the execution
machine.

RMS_RESOURCEID

contains the Resource Management System (RMS) ID for this batch job (useful only
on machines that still use RMS, such as LANL's Q machine).

SHELL is the pathname of the shell that interprets the job script.

SLURM_JOBID

is the job ID of this batch script's underlying SLURM job (if any). This can be reset
by SLURM's SRUN utility.

SLURM_NETWORK

(On AIX machines only, LCRM automatically sets this extra environment variable
when SLURM is used instead of LoadLeveler) specifies four network features for
each SLURM job step (which under AIX means for each POE invocation), using an
argument with this sequential format:
network.[protocol],[device],[adapteruse],[mode]
where:

protocol specifies the network protocol (such as MPI).

device specifies the kind of switch used for communication (ethernet, FDDI,
etc.), where the choices are the same abbreviation strings as the
possible values of environment variable MP_EUIDEVICE (see the
POE User Guide, "Task Communication" section (URL:
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.3.3)).

adapteruse specifies whether (SHARED) or not (DEDICATED) your job is
willing to share a node's switch adapter with other jobs (see the POE
User Guide, "Other POE Environment Variables" section (URL:
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.4) on
corresponding environment variable MP_ADAPTER_USE).

Environment Variables - 33

http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.3.3
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.4

mode specifies which of two protocols or modes should be used for task
communications, where the choices are the same as the possible
values of environment variable MP_EUILIB (see "User Setable
Variables" above (page 15)).

SLURM_NNODES

is the actual number of nodes assigned by SLURM to run your job (this may exceed
the node count that you requested with SRUN's -N option). See the "SRUN
Resource-Allocation Options" section (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.4) in the SLURM Reference
Manual for details.

SLURM_NPROCS

is the total number of processes run for your job by SLURM. This is analogous to
MP_PROCS as used by POE on AIX machines, except that SLURM_NPROCS applies
to batch jobs as well. See also the "Comparison with POE" section (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.2) of the SLURM Reference
Manual for more details.

SLURM_UID identifies the user to SLURM.

TZ specifies your job's local time zone (US/Pacific for LC machines). You can reset this
with SRUN.

USER is your LC user name (same as LOGNAME but used by BSD-derived UNIX software).

Environment Variables - 34

http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.4
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.2

C. Unset Variables

LCRM unsets all of these environment variables in the execution environment, when your job starts
to run (even if you use PSUB's -x option):

KRB5CCNAME supports Kerberos with a directory name for KINIT use.

LD_LIBRARY_PATH

(Linux/CHAOS only) specifies an ordered, colon-deliminted list of directories for
the linker to check to find dynamically loaded libraries. See the detailed explanation
below (page 46).

RMS_MEMLIMIT

supports Resource Management System (RMS), no longer used on LC machines.

RMS_PARTTION

supports Resource Management System (RMS), no longer used on LC machines.

RMS_PRIORITY

supports Resource Management System (RMS), no longer used on LC machines.

RMS_TIMELIMIT

supports Resource Management System (RMS), no longer used on LC machines.

TERM specifies a terminal type (for interactive use only).

TERMCAP supports character-cell terminals and printers (retained only for backward compatibility
with some older programs).

Environment Variables - 35

D. Deprecated Variables

These environment variables once filled an important role for LCRM, but now each has been superceded
by a replacement variable with a different name (and hence already explained by that name in subsections
A, B, or C above).

LCRM_REQID deprecated. This will be replaced by PSUB_JOBID in a version of LCRM after version
6.14.

PCS_REQID deprecated. This will be replaced by PSUB_JOBID in a version of LCRM after version
6.14.

PSUB_SHELL deprecated. This will be eliminated completely in a version of LCRM after version
6.14 (it contains the user's login shell on the submittal rather than the execution
machine).

QSUB_HOST deprecated. This will be replaced by PSUB_HOST in a version of LCRM after version
6.14.

QSUB_REQID deprecated. This will be replaced by PSUB_JOBID in a version of LCRM after version
6.14.

QSUB_REQNAME

deprecated. This will be replaced by PSUB_REQNAME in a version of LCRM after
version 6.14.

QSUB_WORKDIR

deprecated. This will be replaced by PSUB_WORKDIR in a version of LCRM after
version 6.14.

Environment Variables - 36

How LCRM Uses Environment Variables

LCRM interacts with relevant environment variables (I) when you submit your batch job and (II) again
later when your job starts in its execution environment. This section explains which environment variables
LCRM uses at each phase (job submittal, execution) and also the order in which those variables are set
(or reset) by all of the software that can affect them in either phase. This explanation refers to the four
groups of LCRM-relevant environment variables defined and enumerated in the previous subsection (page
30).

At Job Submittal

THE SEQUENCE:
Here is the sequence in which environment variables (that may affect your batch job) are set on the machine
where you submit the job (that is, where you run PSUB):

Submittal
Sequence (I)

(1) The system sets the usual array of "system" (page 10) and "get-only" (page 13)
environment variables when you log in.

(2) The shell SOURCEs your dot files, which may in turn set additional environment
variables (page 15) (such as PATH).

(3) You may set (unset, reset) other environment variables interactively.

(4) You run PSUB.

(a) Some (but usually not all) aspects of (1), (2), and (3) are captured
in the specific members of LCRM's "Group A" (PSUB) environment
variables (page 31).

(b) You decide whether to also pass the remaining values to your job
by invoking/omitting PSUB's -x option (described below).

WITHOUT -x:
If you run PSUB and omit the -x (lowercase eks) option, then LCRM passes all the "Group A" environment
variables (page 31) from the submittal environment, unsets all the "Group C" environment variables (page
35), and sets all the "Group B" environment variables (page 32) on the machine where your job runs when
your job starts. However, no other environment variables that you may have defined in steps (2) or (3)
above before your ran PSUB are passed to your job. The default (omitting -x) leaves your job's execution
environment somewhat independent of its submittal environment.

WITH -x:
If you run PSUB and invoke the -x option, then LCRM passes all the "Group A" environment variables
(page 31) from the submittal environment, unsets all the "Group C" environment variables (page 35), and
sets all the "Group B" environment variables (page 32) on the machine where your job runs when your
job starts. LCRM also passes to the job the values of any additional environment variables that you set (or

Environment Variables - 37

reset) on the submittal machine in your dot files (step 2) or interactively (step 3) prior to running PSUB.
Thus, using -x lets you heavily influence your job's execution environment by sharing with it customizing
environment-variable decisions that you made earlier, even if they were not represented in "Group A" or
"Group B" above. There are, however, two exceptions (see the next paragraph).

EXCEPTIONS:
Even if you invoke PSUB's -x option when you submit your batch job, LCRM handles two environment
variables in a special way.

ENVIRONMENT

is always set to the uppercase string BATCH on your job's execution machine
regardless of its value on the submittal machine (your job script can then reliably test
for this value as it runs). As a safety measure, starting in February, 2006, LCRM
version 6.14 will execute your batch job even if your script (foolishly) resets
ENVIRONMENT to INTERACTIVE.

LD_LIBRARY_PATH

is always unset on your job's execution machine regardless of its value on the submittal
machine. You should set it within your job script if it needs a special value. Correct
use of this variable on LC Linux/CHAOS machines is complicated by several
interdependencies. See the detailed explanation below (page 46).

MOAB-SCHEDULED MACHINES:
On an LC cluster scheduled by Moab rather than by LCRM, if you submit your job using PSUB then
PSUB's -x option is fully emulated (because MSUB's -V (uppercase vee) option fills just the same
comprehensive environment-variable passing role from the submittal to the execution environment as does
PSUB's -x). If you submit your job using Moab's native MSUB utility, then you can invoke -V directly or
instead use -v (lowercase vee) to pass only a specified list of environment variables to your job if you
prefer. See Moab at LC (URL: http://www.llnl.gov/LCdocs/moab) for more details on Moab's own approach
to batch-job environment variables (quite different from LCRM's).

Environment Variables - 38

http://www.llnl.gov/LCdocs/moab

At Job's Execution

Here is the sequence in which environment variables (that may affect your batch job) are set on the
machine where your job runs when it starts (which may be quite different than the machine on which you
executed PSUB to submit the job):

Execution
Sequence (II)

(1) LCRM spawns the shell for your batch job.

(2) LCRM (un)sets the environment variables relevant to your specific job.

(a) LCRM passes the "Group A" general environment variables (page
31) to the execution environment.

(b) LCRM sets the "Group B" general environment variables (page 32).

(c) IF and ONLY IF you invoked the -x option when you submitted this
job with PSUB, LCRM then sets or resets any additional
"customized" environment variables that you specified in your dot
files or interactively on the submittal machine before you ran PSUB
(but that were outside Groups A and B). By default, LCRM omits
this step.

(3) The system sets the usual array of "system" (page 10) and "get-only" (page 13)
environment variables when you log in.

(4) The shell SOURCEs your dot files, which may in turn set additional environment
variables (page 15) (such as PATH).

(5) Your job script executes, optionally setting additional environment variables by means
of commands within it.

The last step here (5) is your job's chance to

• read any of the Group A or B variables as already set above, or

• test previously set environment variables (such as ENVIRONMENT, which LCRM always sets to
BATCH) to trigger special conditional script actions, or

• set previously unset environment variables (such as LD_LIBRARY_PATH, which LCRM always
unsets, or LDR_CNTRL if you need large memory pages) to meet your job's special local needs in
its execution environment.

Environment Variables - 39

SLURM Environment Variables

The Simple Linux Utility for Resource Management (SLURM) handles resource allocation and task
management on the level below LCRM or Moab on individual high-performance clusters. This section
introduces the environment variables that SLURM sets and uses as it manages jobs. For general information
on SLURM and its specific tools, such as SRUN, see LC's SLURM Reference Manual (URL:
http://www.llnl.gov/LCdocs/slurm).

SRUN Option Variables

Many SLURM SRUN options have corresponding environment variables (analogous to the approach
used with POE). Each SRUN option, if invoked during execution, always overrides (resets) the corresponding
environment variable (which contains each job feature's default value, if there is a default). For more
background on SRUN and how to use it, or for an explanation of any SRUN option listed in the table
below, consult the SRUN section (URL: http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2) of the
SLURM Reference Manual.

Corresponding SRUN Option(s)Environment Variable
-U, --accountSLURM_ACCOUNT
--cpu_bindSLURM_CPU_BIND
-c, --ncpus-per-taskSLURM_CPUS_PER_TASK
[configuration file location]SLURM_CONF
--conn-typeSLURM_CONN_TYPE
--core-formatSLURM_CORE_FORMAT
-v, --verboseSLURM_DEBUG
-d, --slurmd-debugSLURMD_DEBUG
-P, --dependencySLURM_DEPENDENCY
-X, --disable-statusSLURM_DISABLE_STATUS
-m planeSLURM_DIST_PLANESIZE
-m, --distributionSLURM_DISTRIBUTION
--epilogSLURM_EPILOG
--exclusiveSLURM_EXCLUSIVE
-g, --geometrySLURM_GEOMETRY
-J, --job-nameSLURM_JOB_NAME
-l, --labelSLURM_LABELIO
--mem_bindSLURM_MEM_BIND
--networkSLURM_NETWORK(*)
-N, --nodesSLURM_NNODES
--no-requeueSLURM_NO_REQUEUE
--no-rotateSLURM_NO_ROTATE
-n, --ntasksSLURM_NPROCS
--ntasks-per-coreSLURM_NTASKS_PER_CORE
--ntasks-per-nodeSLURM_NTASKS_PER_NODE
--ntasks-per-socketSLURM_NTASKS_PER_SOCKET

Environment Variables - 40

http://www.llnl.gov/LCdocs/slurm
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2

Corresponding SRUN Option(s)Environment Variable
-o, --overcommitSLURM_OVERCOMMIT
-p, --partitionSLURM_PARTITION
--prologSLURM_PROLOG
-D, --chdirSLURM_REMOTE_CWD
--ctrl-comm-ifhnSLURM_SRUN_COMM_IFHN
-e, --errorSLURM_STDERRMODE
-i, --inputSLURM_STDINMODE
-o, --outputSLURM_STDOUTMODE
--task-epilogSLURM_TASK_EPILOG
--task-prologSLURM_TASK_PROLOG
-t, --timeSLURM_TIMELIMIT
-u, --unbufferedSLURM_UNBUFFEREDIO
-W, --waitSLURM_WAIT
-D, --chdirSLURM_WORKING_DIR

(*)See explanatory details below (page 45).

Environment Variables - 41

Task-Environment Variables

In addition to the option variables cited above (page 40), SRUN sets these environment variables (a
few are the same as option variables) for each executing task on each remote compute node (under any
operating system). On LC machines where Moab has replaced LCRM as the scheduler for batch jobs,
Moab uses (most of) these variables instead of PSUB variables to manage the attributes of the jobs that it
runs. A few (as noted) were added exclusively to support Moab.

SLURM_CPU_BIND_VERBOSE

affects the reporting of CPU/task binding, as explained in the "Affinity or NUMA
Constraints" section (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.7.2) of the SLURM Reference
Manual under --cpu_bind.

SLURM_CPU_BIND_TYPE

affects the binding of CPUs to tasks, as explained in the "Affinity or NUMA
Constraints" section (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.7.2) of the SLURM Reference
Manual under --cpu_bind.

SLURM_CPU_BIND_LIST

affects the binding of CPUs to tasks, as explained in the "Affinity or NUMA
Constraints" section (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.7.2) of the SLURM Reference
Manual under --cpu_bind.

SLURM_CPUS_ON_NODE

specifies the number of processors available to the job on this node.

SLURM_JOBID

specifies the job ID of the executing job (see also SRUN's --jobid option (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.5.2)).

SLURM_LAUNCH_NODE_IPADDR

specifies the IP address of the node from which the task launch initiated (the node
where SRUN executed).

SLURM_LOCALID

specifies the node-local task ID for the process within a job.

SLURM_MEM_BIND_VERBOSE

affects the reporting of memory/task binding, as explained in the "Affinity or NUMA
Constraints" section (URL:

Environment Variables - 42

http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.7.2
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.7.2
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.7.2
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.5.2
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.7.2

http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.7.2) of the SLURM Reference
Manual under --mem_bind.

SLURM_MEM_BIND_TYPE

affects the binding of memory to tasks, as explained in the "Affinity or NUMA
Constraints" section (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.7.2) of the SLURM Reference
Manual under --mem_bind.

SLURM_MEM_BIND_LIST

affects the binding of memory to tasks, as explained in the "Affinity or NUMA
Constraints" section (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.7.2) of the SLURM Reference
Manual under --mem_bind.

SLURM_NNODES

is the actual number of nodes assigned to run your job (which may exceed the number
of nodes that you explicitly requested with SRUN's -N option (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.4)).

SLURM_NODEID

specifies the relative node ID of the current node.

SLURM_NODELIST

specifies the list of nodes on which the job is actually running.

SLURM_NPROCS

specifies the total number of processes in the job.

SLURM_PRIO_PROCESS

(for Moab jobs) is the NICE value of the job when submitted. SLURM propagates
this to all spawned processes.

SLURM_PROCID

specifies the MPI rank (or relative process ID) for the current process.

SLURM_STEPID

specifies the step ID of the current job.

SLURM_TASK_PID

(for Moab jobs) specifies the process ID of the task being started on a compute node.

Environment Variables - 43

http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.7.2
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.7.2
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.4

SLURM_TASKS_PER_NODE

specifies the number of tasks to initiate on each node. Values are a comma-delimited
list in the same order as SLRUM_NODELIST. To specify two or more nodes with
the same task count, follow the count by (x#), where # is the repetition count. For
example,
SLURM_TASKS_PER_NODE=2(x3),1
indicates two tasks per node on the first three nodes, then one task on the fourth node.

SLURM_UMASK

(for Moab jobs) captures the UMASK (user file-create mask) setting for this job's
user at the time of submittal. SLURM propagates this to all spawned processes.

MPIRUN_PARTITION

(BlueGene/L only) specifies the block name.

MPIRUN_NOALLOCATE

(BlueGene/L only) prevents allocating a block.

MPIRUN_NOFREE

(BlueGene/L only) prevents freeing a block.

Environment Variables - 44

Other SLURM-Relevant Variables

Other environment variables important for SLURM SRUN-managed jobs include:

MAX_TASKS_PER_NODE

provides an upper bound on the number of tasks that SRUN assigns to each job node,
even if you allow more than one process per CPU by invoking SRUN's -O (uppercase
oh) option (URL: http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.5.3).

SLURM_HOSTFILE

names the file that specifies how to assign tasks to nodes, rather than using the block
or cyclic approaches toggled by SRUN's -m (--distribution) option (URL:
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.5.1).

On AIX (IBM) machines only, this extra environment variable is automatically set by LCRM when
SLURM is used instead of LoadLeveler (alternatively, set with SRUN's --network=type option even though
POE launches tasks instead of SRUN under AIX). On (non-AIX) machines that use Moab instead of LCRM
for batch-job scheduling, SLURM_NETWORK and --network can also take the place of some specialized
former PSUB options.

SLURM_NETWORK

specifies four network features for each SLURM job step (which under AIX means
for each POE invocation), using an argument with this sequential format:
network.[protocol],[device],[adapteruse],[mode]
where:

protocol specifies the network protocol (such as MPI).

device specifies the kind of switch used for communication (ethernet, FDDI,
etc.), where the choices are the same abbreviation strings as the
possible values of environment variable MP_EUIDEVICE (see the
POE User Guide, "Task Communication" section (URL:
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.3.3)).

adapteruse specifies whether (SHARED) or not (DEDICATED) your job is
willing to share a node's switch adapter with other jobs (see the POE
User Guide, "Other POE Environment Variables" section (URL:
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.4) on
corresponding environment variable MP_ADAPTER_USE).

mode specifies which of two protocols or modes should be used for task
communications, where the choices are the same as the possible
values of environment variable MP_EUILIB (see the POE User
Guide, "Task Communication" section (URL:
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.3.3)).

Environment Variables - 45

http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.5.3
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.5.1
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.3.3
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.4
http://www.llnl.gov/LCdocs/poe/index.jsp?show=s6.3.3

LD_LIBRARY_PATH Details
Environment variable LD_LIBRARY_PATH (on Linux/CHAOS machines only) specifies a

colon-delimited, ordered list of directories (pathnames) to search first for dynamically linked libraries,
before the standard set of Linux library directories. This is especially useful for testing a new, nonstandard,
or debug-version of a library. (Dynamically linked libraries are those not incorporated into your binary
file at link time, but instead referenced by their location. All have .so suffixes, such as libnew.so.) On AIX
systems, environment variable LIBPATH fills the same role as LD_LIBRARY_PATH does under Linux.

Using LD_LIBRARY_PATH correctly on LC machines calls for careful attention to several
interdependencies (and to several LD linker options). Invoking the setup script for the Intel compilers
(ICC, IFC) on the SCF Linux clusters, namely

source /opt/intel/compiler50/ia32/bin/iccvars.sh

sets the environment variable LD_LIBRARY_PATH to specific Intel libraries. If you alternate between
using ICC and the GNU compiler GCC, you should unset this variable by hand each time you use GCC.
Note that sometimes Linux system updates leave LD_LIBRARY_PATH undefined, so your scripts should
always test for this possibility before trying to append (or prepend) other path values to whatever this
environment variable contains.

Under CHAOS 3.0 (deployed late in 2005), the compiler scripts link with -rpath for the MPI libraries
by default. Consequently:

(1) If you previously set LD_LIBRARY_PATH to /usr/lib/mpi/lib or /usr/lib/mpi/mpi_gnu/lib by hand,
this step is no longer needed.

(2) If you need "side installs" to handle MPI-vendor bugs, you should link with -rpath=no and then set
LD_LIBRARY_PATH to your preferred nondefault directory.

(3) Remember that like all environment variables, LD_LIBRARY_PATH is inherited by all programs
called by the one for which you set it. This may sometimes produce unintended errors or problems for
child processes.

(4) Remember also that LCRM unsets LD_LIBRARY_PATH on the execution machine at the start of
every batch job that it manages. If, for any of the above reasons, your batch job needs a specific value in
LD_LIBRARY_PATH, your own job script must provide that value.

(5) Starting in December, 2006, LC enabled the LLNL-developed GNU linker (LD) option pair

 -Wl,--auto_rpath

on all (and only) Xeon (e.g., ALC, ACE, QUEEN, LILAC) and Opteron (e.g., Yana, Zeus) Linux/CHAOS
production machines (OCF and SCF). The LD options -Ldir or --library-path=dir insert dir into the list of
search paths that LD searches for libraries at link time. The -Wl,--auto_rpath option pair inserts all such
-L directories also into the list of search paths that LD searches for dynamically linked libraries at run time
(sometimes called the executable's RPATH list). Specifically, invoking --auto_rpath inserts the -L directories
into the RPATH list in the following order:

Environment Variables - 46

 SEARCH ORDER for run-time libraries:

 1. Directories specified by user or compiler
 with --rpath options.

 2. Directories specified by -L and added by
 using -Wl,--auto_rpath.

 3. Directories specified in environment variable
 LD_LIBRARY_PATH or in /etc/ld.so.conf.

You can check an executable's current ordered RPATH list (or confirm the operation of -Wl,--auto_rpath
to expand that list) by using the OBJDUMP utility:

objdump -p executable | grep RPATH

Environment Variables - 47

Dictionary of LC Environment Variables
Find the environment variable that interests you in this alphabetical list, then follow the online link or

printed-page cross reference to read the passage that describes it in this manual.

AIXTHREAD_COND_DEBUG (page 17)

AIXTHREAD_MINKTHREADS (page 17)

AIXTHREAD_MNRATIO (page 17)

AIXTHREAD_MUTEX_DEBUG (page 17)

AIXTHREAD_RWLOCK_DEBUG (page 18)

AIXTHREAD_SCOPE (page 18)

AIXTHREAD_SLRATIO (page 18)

BGL_APP_L1_SWOA (page 18)

BGL_APP_L1_WRITE_THROUGH (page 19)

BGLMPI_ALLGATHER (page 19)

BGLMPI_ALLGATHERV (page 19)

BGLMPI_ALLREDUCE (page 19)

BGLMPI_ALLTOALL (page 19)

BGLMPI_ALLTOALLV (page 19)

BGLMPI_BARRIER (page 19)

BGLMPI_BCAST (page 19)

BGLMPI_COLLECTIVE (page 19)

BGLMPI_COLLECTIVE_DISABLE (page 19)

BGLMPI_EAGER (page 20)

BGLMPI_MAPPING (page 21)

BGLMPI_PACING (page 21)

BGLMPI_REDUCE (page 19)

BGLMPI_RVZ (page 21)

BGLMPI_RZV (page 21)

CHECKPOINT (page 21)

CLASSPATH (page 15)

CVSUMASK (page 21)

CVS_RSH (page 21)

Environment Variables - 48

DISPLAY (page 17)

EDITOR (page 21)

ENVIRONMENT (page 13)

HOME (page 13)

HOST_GRP (page 13)

HOSTNAME (page 13)

LANG (page 22)

LC_ALL (page 22)

LC_FASTMSG (page 22)

LD_LIBRARY_PATH (page 46)

LDR_CNTRL (page 22)

LESS (page 22)

LESSOPEN (page 22)

LIBELAN_GALLOC_EBASE (page 22)

LIBELAN_GALLOC_MBASE (page 23)

LIBELAN_GALLOC_SIZE (page 23)

LIBELAN_WAITTYPE (page 23)

LIBPATH (page 15)

LLAPIERRORMSGS (page 23)

LOCPATH (page 15)

LOGIN (page 13)

LOGNAME (page 13)

LS_COLORS (page 23)

MAILMSG (page 23)

MALLOC_TRIM_THRESHOLD (page 23)

MALLOC_MMAP_MAX (page 23)

MANPAGER (page 24)

MANPATH (page 15)

MAX_TASKS_PER_NODE (page 45)

MEMORY_AFFINITY (page 24)

MP_BULK_MIN_MSG_SIZE (page 24)

Environment Variables - 49

MP_CKPTDIR (page 24)

MP_CKPTFILE (page 24)

MP_COREFILE_FORMAT (page 24)

MP_COREFILE_SIGTERM (page 25)

MP_CPU_USE (page 25)

MP_CSS_INTERRUPT (page 25)

MP_EUILIB (page 25)

MP_HOSTFILE (page 25)

MP_INFOLEVEL (page 25)

MP_LABELIO (page 26)

MP_POLLING_INTERVAL (page 26)

MP_RESD (page 26)

MP_RMLIB (page 26)

MP_S_POE_AFFINITY (page 11)

MP_SHARED_MEMORY (page 26)

MP_SINGLE_THREAD (page 26)

MP_TASK_AFFINITY (page 26)

MP_TLP_REQUIRED (page 27)

MP_USE_BULK_XFER (page 27)

MPIRUN_PARTITION (page 44)

MPIRUN_NOALLOCATE (page 44)

MPIRUN_NOFREE (page 44)

NETWORK (page 13)

NLSPATH (page 15)

OBJECT_MODE (page 28)

PAGER (page 28)

PATH (page 15)

PERL5LIB (page 16)

PS1 (page 28)

PSTAT_CONFIG (page 28)

SHELL (page 13)

Environment Variables - 50

SLURM-CPU-BIND-LIST (page 42)

SLURM-CPU-BIND-TYPE (page 42)

SLURM-CPU-BIND-VERBOSE (page 42)

SLURM_CPUS_ON_NODE (page 42)

SLURM_HOSTFILE (page 45)

SLURM_JOBID (page 42)

SLURM_LAUNCH_NODE_IPADDR (page 42)

SLURM_LOCALID (page 42)

SLURM-MEM-BIND-LIST (page 43)

SLURM-MEM-BIND-TYPE (page 43)

SLURM-MEM-BIND-VERBOSE (page 42)

SLURM_NETWORK (page 45)

SLURM_NNODES (page 43)

SLURM_NODEID (page 43)

SLURM_NODELIST (page 43)

SLURM_NPROCS (page 43)

SLURM_PRIO_PROCESS (page 43)

SLURM_PROCID (page 43)

SLURM_STEPID (page 43)

SLURM_TASK_PID (page 43)

SLURM_TASKS_PER_NODE (page 44)

SLURM_UMASK (page 44)

SPINLOOPTIME (page 28)

SSH_CLIENT (page 13)

SSH_CONNECTION (page 13)

SSH_TTY (page 13)

SYS_TYPE (page 14)

TERM (page 17)

TERMCAP (page 28)

TMP (page 28)

TMPDIR (page 28)

Environment Variables - 51

TZ (page 28)

USER (page 14)

XCURSOR_THEME (page 28)

XLOCALEDIR (page 16)

YIELDLOOPTIME (page 28)

YOGRT_DEBUG (page 29)

YOGRT_REMAINING (page 29)

Environment Variables - 52

Dotkit
Details coming soon.

Environment Variables - 53

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes.
(C) Copyright 2007 The Regents of the University of California. All rights reserved.

Environment Variables - 54

Keyword Index
To see an alphabetical list of keywords for this document, consult the next section (page 56).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in this document.
availability Where these programs run.
who Who to contact for assistance.

introduction Overview of this document.

background Environment var. basic characteristics.
roles Environment versus other variables.
syntax IEEE syntax standards for env. vars.
tools How to set and show env. vars.
security Known env-var security issues.

kinds Kinds of LC environment variables.
system-variables Set and used by system only.
get-only-variables Set by system, used by users.
user-setable-variables Set and used by users (mostly).

append Customize by appending value.
replace Customize by replacing value.

batch-variables Used (mostly) to manage batch jobs.
lcrm-ev-sets Environment variables known to LCRM.
lcrm-submittal-variables

 Submittal-machine environment capture.
lcrm-execution-variables

 Execution-machine environment set up.
lcrm-unset-variables

 Environment vars unset by LCRM.
lcrm-deprecated-variables

 Formerly important LCRM env. vars.
lcrm-variable-usage How LCRM uses environment variables.
lcrm-submittal-usage

 LCRM use at batch-job submittal.
lcrm-execution-usage

 LCRM use at batch-job execution.
slurm-variables How SLURM uses environment variables.
srun-options Vars corresponding to SLURM SRUN options.
srun-task-variables Vars that SRUN sets for each task.
other-slurm Other SLURM-relevant variables.

ld-library-path LD_LIBRARY_PATH use at LC explained.

dictionary Alphabetical summary of LC env. vars.

dotkit Managing env. vars. with Dotkit.

index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

Environment Variables - 55

Alphabetical List of Keywords

Keyword Description
------- -----------

a The alphabetical index of keywords.
append Customize by appending value.
availability Where these programs run.
background Environment var. basic characteristics.
batch-variables Used (mostly) to manage batch jobs.
date The latest changes to this document.
dictionary Alphabetical summary of LC env. vars.
dotkit Managing env. vars. with Dotkit.
entire This entire document.
get-only-variables Set by system, used by users.
index The structural index of keywords.
introduction Overview of this document.
kinds Kinds of LC environment variables.
lcrm-deprecated-variables Formerly important LCRM env. vars.
lcrm-ev-sets Environment variables known to LCRM.
lcrm-execution-usage LCRM use at batch-job execution.
lcrm-execution-variables Execution-machine environment set up.
lcrm-submittal-usage LCRM use at batch-job submittal.
lcrm-submittal-variables Submittal-machine environment capture.
lcrm-unset-variables Environment vars unset by LCRM.
lcrm-variable-usage How LCRM uses environment variables.
ld-library-path LD_LIBRARY_PATH use at LC explained.
other-slurm Other SLURM-relevant variables.
replace Customize by replacing value.
revisions The complete revision history.
roles Environment versus other variables.
scope Topics covered in this document.
security Known env-var security issues.
slurm-variables How SLURM uses environment variables.
srun-options Vars corresponding to SLURM SRUN options.
srun-task-variables Vars that SRUN sets for each task.
syntax IEEE syntax standards for env. vars.
system-variables Set and used by system only.
title The name of this document.
tools How to set and show env. vars.
user-setable-variables Set and used by users (mostly).
who Who to contact for assistance.

Environment Variables - 56

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
15Aug07 replace MP_TLP_REQUIRED details updated.

srun-options 13 more variables added to table.
srun-task-variables

 SLURM_STEPID added.
dictionary SLURM_STEPID added.

29May07 lcrm-submittal-usage
 Moab-scheduled cases explained.

replace YOGRT_DEBUG, _REMAINING added.
dictionary YOGRT_DEBUG, _REMAINING added.

03Apr07 replace MP_TLP_REQUIRED added and
 LDR_CNTRL links to it.

dictionary MP_TLP_REQUIRED added.

22Mar07 slurm-variables
 Three Moab-support variables added.

lcrm-ev-sets Cross ref added on Moab e.v. handling.
other-slurm SLURM_NETWORK Moab role added.
dictionary New variables added to list.

10Jan07 ld-library-path
 Search order spelled out.

system-variables
 MP_S_POE_AFFINITY added.

replace Seven more MP variables explained.
dictionary All new variables included.

14Sep06 slurm-variables
 Added section, 3 subsections on SLURM.

user-setable-variables
 Added cross ref to SLURM sections.

dictionary SLURM variables added to list.
index New keywords for new sections.

07Jun06 user-setable-variables
 Section subdivided for better access.
 Sixteen BG/L specialized variables added.

index New keywords for new sections.
tools MPIRUN -env role on BG/L noted.
dictionary User get/set variables alphabetized.

13Mar06 lcrm-submittal-usage
 New BATCH/INTERACTIVE value independence.

lcrm-execution-variables
 LCRM_SERIESID new with LCRM 6.14.
 SLURM_NPROCS compared with MP_PROCS.

user-setable-variables
 PSTAT_CONFIG added, explained.
 CHECKPOINT, MP_CKPTDIR, MP_CKPTFILE
 added and explained.

Environment Variables - 57

08Feb06 ld-library-path
 New explanatory section added.

index New keyword for new section.
tools Many details added.
security Many details added.
get-only-variables

 NETWORK role explained.
user-setable-variables

 Seven variables added.
 Eleven explanations expanded.

lcrm-execution-variables
 More details on SLURM variables.

18Jan06 entire First edition of Environment Vars. manual.

TRG (15Aug07)

UCRL-WEB-218121
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (15Aug07) Contact: lc-hotline@llnl.gov

Environment Variables - 58

http://www.llnl.gov/disclaimer.html

	Preface
	Introduction
	Environment Variable Background and Philosophy
	Roles
	Syntax
	Tools
	Security Issues

	Kinds of Environment Variables at LC
	System Variables
	Get-Only Variables
	User-Setable Variables
	Append Values
	Replace Values

	Batch-Job Environment Variables
	Environment Variables Known to LCRM
	A. Submittal Variables
	B. Execution Variables
	C. Unset Variables
	D. Deprecated Variables

	How LCRM Uses Environment Variables
	At Job Submittal
	At Job's Execution

	SLURM Environment Variables
	SRUN Option Variables
	Task-Environment Variables
	Other SLURM-Relevant Variables

	LD_LIBRARY_PATH Details

	Dictionary of LC Environment Variables
	Dotkit
	Disclaimer
	Keyword Index
	Alphabetical List of Keywords
	Date and Revisions

